

Welcome to PyMySQL’s documentation!

	User Guide
	Installation

	Examples

	Resources

	Development

	API Reference
	Connection Object

	Cursor Objects

Indices and tables

	Index

	Module Index

	Search Page

User Guide

The PyMySQL user guide explains how to install PyMySQL and how to contribute to
the library as a developer.

	Installation

	Examples

	Resources

	Development

Installation

The last stable release is available on PyPI and can be installed with pip:

$ pip install PyMySQL

Requirements

	Python – one of the following:

	CPython [http://www.python.org/] >= 2.6 or >= 3.3

	PyPy [http://pypy.org/] >= 4.0

	IronPython [http://ironpython.net/] 2.7

	MySQL Server – one of the following:

	MySQL [http://www.mysql.com/] >= 4.1 (tested with only 5.5~)

	MariaDB [https://mariadb.org/] >= 5.1

Examples

CRUD

The following examples make use of a simple table

CREATE TABLE `users` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `email` varchar(255) COLLATE utf8_bin NOT NULL,
 `password` varchar(255) COLLATE utf8_bin NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin
AUTO_INCREMENT=1 ;

import pymysql.cursors

Connect to the database
connection = pymysql.connect(host='localhost',
 user='user',
 password='passwd',
 db='db',
 charset='utf8mb4',
 cursorclass=pymysql.cursors.DictCursor)

try:
 with connection.cursor() as cursor:
 # Create a new record
 sql = "INSERT INTO `users` (`email`, `password`) VALUES (%s, %s)"
 cursor.execute(sql, ('webmaster@python.org', 'very-secret'))

 # connection is not autocommit by default. So you must commit to save
 # your changes.
 connection.commit()

 with connection.cursor() as cursor:
 # Read a single record
 sql = "SELECT `id`, `password` FROM `users` WHERE `email`=%s"
 cursor.execute(sql, ('webmaster@python.org',))
 result = cursor.fetchone()
 print(result)
finally:
 connection.close()

This example will print:

{'password': 'very-secret', 'id': 1}

Resources

DB-API 2.0: http://www.python.org/dev/peps/pep-0249

MySQL Reference Manuals: http://dev.mysql.com/doc/

MySQL client/server protocol:
http://dev.mysql.com/doc/internals/en/client-server-protocol.html

PyMySQL mailing list: https://groups.google.com/forum/#!forum/pymysql-users

Development

You can help developing PyMySQL by contributing on GitHub [https://github.com/PyMySQL/PyMySQL].

Building the documentation

Go to the docs directory and run make html.

Test Suite

If you would like to run the test suite, create a database for testing like this:

mysql -e 'create database test_pymysql DEFAULT CHARACTER SET utf8 DEFAULT COLLATE utf8_general_ci;'
mysql -e 'create database test_pymysql2 DEFAULT CHARACTER SET utf8 DEFAULT COLLATE utf8_general_ci;'

Then, copy the file .travis/database.json to pymysql/tests/databases.json
and edit the new file to match your MySQL configuration:

$ cp .travis/database.json pymysql/tests/databases.json
$ $EDITOR pymysql/tests/databases.json

To run all the tests, execute the script runtests.py:

$ python runtests.py

A tox.ini file is also provided for conveniently running tests on multiple
Python versions:

$ tox

API Reference

If you are looking for information on a specific function, class or
method, this part of the documentation is for you.

For more information, please read the Python Database API specification [https://www.python.org/dev/peps/pep-0249].

	Connection Object

	Cursor Objects

Connection Object

	
class pymysql.connections.Connection(host=None, user=None, password='', database=None, port=0, unix_socket=None, charset='', sql_mode=None, read_default_file=None, conv=None, use_unicode=None, client_flag=0, cursorclass=<class 'pymysql.cursors.Cursor'>, init_command=None, connect_timeout=10, ssl=None, read_default_group=None, compress=None, named_pipe=None, no_delay=None, autocommit=False, db=None, passwd=None, local_infile=False, max_allowed_packet=16777216, defer_connect=False, auth_plugin_map={}, read_timeout=None, write_timeout=None, bind_address=None, binary_prefix=False)

	Representation of a socket with a mysql server.

The proper way to get an instance of this class is to call
connect().

Establish a connection to the MySQL database. Accepts several
arguments:

	Parameters

	
	host – Host where the database server is located

	user – Username to log in as

	password – Password to use.

	database – Database to use, None to not use a particular one.

	port – MySQL port to use, default is usually OK. (default: 3306)

	bind_address – When the client has multiple network interfaces, specify
the interface from which to connect to the host. Argument can be
a hostname or an IP address.

	unix_socket – Optionally, you can use a unix socket rather than TCP/IP.

	charset – Charset you want to use.

	sql_mode – Default SQL_MODE to use.

	read_default_file – Specifies my.cnf file to read these parameters from under the [client] section.

	conv – Conversion dictionary to use instead of the default one.
This is used to provide custom marshalling and unmarshaling of types.
See converters.

	use_unicode – Whether or not to default to unicode strings.
This option defaults to true for Py3k.

	client_flag – Custom flags to send to MySQL. Find potential values in constants.CLIENT.

	cursorclass – Custom cursor class to use.

	init_command – Initial SQL statement to run when connection is established.

	connect_timeout – Timeout before throwing an exception when connecting.
(default: 10, min: 1, max: 31536000)

	ssl – A dict of arguments similar to mysql_ssl_set()’s parameters.
For now the capath and cipher arguments are not supported.

	read_default_group – Group to read from in the configuration file.

	compress – Not supported

	named_pipe – Not supported

	autocommit – Autocommit mode. None means use server default. (default: False)

	local_infile – Boolean to enable the use of LOAD DATA LOCAL command. (default: False)

	max_allowed_packet – Max size of packet sent to server in bytes. (default: 16MB)
Only used to limit size of “LOAD LOCAL INFILE” data packet smaller than default (16KB).

	defer_connect – Don’t explicitly connect on contruction - wait for connect call.
(default: False)

	auth_plugin_map – A dict of plugin names to a class that processes that plugin.
The class will take the Connection object as the argument to the constructor.
The class needs an authenticate method taking an authentication packet as
an argument. For the dialog plugin, a prompt(echo, prompt) method can be used
(if no authenticate method) for returning a string from the user. (experimental)

	db – Alias for database. (for compatibility to MySQLdb)

	passwd – Alias for password. (for compatibility to MySQLdb)

	binary_prefix – Add _binary prefix on bytes and bytearray. (default: False)

	
autocommit_mode = None

	specified autocommit mode. None means use server default.

	
begin()

	Begin transaction.

	
close()

	Send the quit message and close the socket

	
commit()

	Commit changes to stable storage

	
cursor(cursor=None)

	Create a new cursor to execute queries with

	
ping(reconnect=True)

	Check if the server is alive

	
rollback()

	Roll back the current transaction

	
select_db(db)

	Set current db

	
show_warnings()

	SHOW WARNINGS

Cursor Objects

	
class pymysql.cursors.Cursor(connection)

	This is the object you use to interact with the database.

Do not create an instance of a Cursor yourself. Call
connections.Connection.cursor().

	
callproc(procname, args=())

	Execute stored procedure procname with args

procname – string, name of procedure to execute on server

args – Sequence of parameters to use with procedure

Returns the original args.

Compatibility warning: PEP-249 specifies that any modified
parameters must be returned. This is currently impossible
as they are only available by storing them in a server
variable and then retrieved by a query. Since stored
procedures return zero or more result sets, there is no
reliable way to get at OUT or INOUT parameters via callproc.
The server variables are named @_procname_n, where procname
is the parameter above and n is the position of the parameter
(from zero). Once all result sets generated by the procedure
have been fetched, you can issue a SELECT @_procname_0, …
query using .execute() to get any OUT or INOUT values.

Compatibility warning: The act of calling a stored procedure
itself creates an empty result set. This appears after any
result sets generated by the procedure. This is non-standard
behavior with respect to the DB-API. Be sure to use nextset()
to advance through all result sets; otherwise you may get
disconnected.

	
close()

	Closing a cursor just exhausts all remaining data.

	
execute(query, args=None)

	Execute a query

	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – Query to execute.

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – parameters used with query. (optional)

	Returns

	Number of affected rows

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

If args is a list or tuple, %s can be used as a placeholder in the query.
If args is a dict, %(name)s can be used as a placeholder in the query.

	
executemany(query, args)

	Run several data against one query

	Parameters

	
	query – query to execute on server

	args – Sequence of sequences or mappings. It is used as parameter.

	Returns

	Number of rows affected, if any.

This method improves performance on multiple-row INSERT and
REPLACE. Otherwise it is equivalent to looping over args with
execute().

	
fetchall()

	Fetch all the rows

	
fetchmany(size=None)

	Fetch several rows

	
fetchone()

	Fetch the next row

	
max_stmt_length = 1024000

	Max statement size which executemany() generates.

Max size of allowed statement is max_allowed_packet - packet_header_size.
Default value of max_allowed_packet is 1048576.

	
mogrify(query, args=None)

	Returns the exact string that is sent to the database by calling the
execute() method.

This method follows the extension to the DB API 2.0 followed by Psycopg.

	
setinputsizes(*args)

	Does nothing, required by DB API.

	
setoutputsizes(*args)

	Does nothing, required by DB API.

	
class pymysql.cursors.SSCursor(connection)

	Unbuffered Cursor, mainly useful for queries that return a lot of data,
or for connections to remote servers over a slow network.

Instead of copying every row of data into a buffer, this will fetch
rows as needed. The upside of this is the client uses much less memory,
and rows are returned much faster when traveling over a slow network
or if the result set is very big.

There are limitations, though. The MySQL protocol doesn’t support
returning the total number of rows, so the only way to tell how many rows
there are is to iterate over every row returned. Also, it currently isn’t
possible to scroll backwards, as only the current row is held in memory.

	
fetchall()

	Fetch all, as per MySQLdb. Pretty useless for large queries, as
it is buffered. See fetchall_unbuffered(), if you want an unbuffered
generator version of this method.

	
fetchall_unbuffered()

	Fetch all, implemented as a generator, which isn’t to standard,
however, it doesn’t make sense to return everything in a list, as that
would use ridiculous memory for large result sets.

	
fetchmany(size=None)

	Fetch many

	
fetchone()

	Fetch next row

	
read_next()

	Read next row

	
class pymysql.cursors.DictCursor(connection)

	A cursor which returns results as a dictionary

	
class pymysql.cursors.SSDictCursor(connection)

	An unbuffered cursor, which returns results as a dictionary

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pymysql	

 	
 	
 pymysql.connections	

 	
 	
 pymysql.cursors	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | M
 | P
 | R
 | S

A

 	
 	autocommit_mode (pymysql.connections.Connection attribute)

B

 	
 	begin() (pymysql.connections.Connection method)

C

 	
 	callproc() (pymysql.cursors.Cursor method)

 	close() (pymysql.connections.Connection method)

 	(pymysql.cursors.Cursor method)

 	
 	commit() (pymysql.connections.Connection method)

 	Connection (class in pymysql.connections)

 	Cursor (class in pymysql.cursors)

 	cursor() (pymysql.connections.Connection method)

D

 	
 	DictCursor (class in pymysql.cursors)

E

 	
 	execute() (pymysql.cursors.Cursor method)

 	
 	executemany() (pymysql.cursors.Cursor method)

F

 	
 	fetchall() (pymysql.cursors.Cursor method)

 	(pymysql.cursors.SSCursor method)

 	fetchall_unbuffered() (pymysql.cursors.SSCursor method)

 	
 	fetchmany() (pymysql.cursors.Cursor method)

 	(pymysql.cursors.SSCursor method)

 	fetchone() (pymysql.cursors.Cursor method)

 	(pymysql.cursors.SSCursor method)

M

 	
 	max_stmt_length (pymysql.cursors.Cursor attribute)

 	
 	mogrify() (pymysql.cursors.Cursor method)

P

 	
 	ping() (pymysql.connections.Connection method)

 	
 	pymysql.connections (module)

 	pymysql.cursors (module)

R

 	
 	read_next() (pymysql.cursors.SSCursor method)

 	
 	rollback() (pymysql.connections.Connection method)

S

 	
 	select_db() (pymysql.connections.Connection method)

 	setinputsizes() (pymysql.cursors.Cursor method)

 	setoutputsizes() (pymysql.cursors.Cursor method)

 	
 	show_warnings() (pymysql.connections.Connection method)

 	SSCursor (class in pymysql.cursors)

 	SSDictCursor (class in pymysql.cursors)

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to PyMySQL’s documentation!

 		
 User Guide

 		
 Installation

 		
 Requirements

 		
 Examples

 		
 CRUD

 		
 Resources

 		
 Development

 		
 Building the documentation

 		
 Test Suite

 		
 API Reference

 		
 Connection Object

 		
 Cursor Objects

_static/ajax-loader.gif

